论文部分内容阅读
研究一个计算方法,使我们设计的弹簧重量最轻、耗材最少(即弹簧丝的体积最小),无疑地是很有实际意义的。M.F.Spotts在1977年《Machine Designi》上介绍的计算方法,由于采用了简略计算,和精确计算的结果有较大的差距,无实用价值。本文目的是对此提供一个切实可行的计算方法,供设计最省料(或最轻)弹簧时应用。计算基础及最佳弹簧的弹簧指数采用的符号如下(见图1):d——弹簧丝的直径;P_2——最大工作负荷;F_2——最大工作负荷下的变形量;D_2——弹簧中径;C——弹簧指数(C=D_2/d);K——曲度系数;n——弹簧的工作圈数;n_0——弹簧的死圈数;G——剪
Studying a calculation method that makes it possible to design the spring with the lightest weight and the least amount of consumables (ie, the smallest wire size of a spring wire) is certainly of practical significance. The calculation method introduced by M.F.Spotts in “Machine Designi” in 1977 has no practical value due to the simple calculation and the big difference with the exact calculation result. The purpose of this article is to provide a practical calculation of this method for the design of the most material-saving (or lightest) spring application. The calculation of the basis and the spring index of the best spring used symbols are as follows (see Figure 1): d - the diameter of the spring wire; P_2 - the maximum working load; F_2 - the deformation under the maximum working load; D_2 - Diameter; C - spring index (C = D_2 / d); K - coefficient of curvature; n - number of work cycles of the spring; n_0 - number of dead cycles of the spring;