论文部分内容阅读
通过对小参量δ =(ω2pe/ω2 ) -1展开 ,导出了简化但普遍的低混杂波电流驱动 (LHCD)参量状态下的低混杂波色散方程 .讨论了环形效应 (环向磁场的R-1关系及磁面的Shafranov位移 )引起的平行折射率的上移或下移及慢波与快波的模转换条件 ,得到一个关于低混杂波可以向等离子体内部传播的充分条件 ,它与LHCD实验中普遍观察到的密度极限现象有密切联系 .预期的临界密度nec∝f4 / 3 B2 / 3 A4 / 3( f ,B ,A分别为波的频率、磁场强度和环径比 ) ,与圆截面托卡马克装置中LHCD实验结果较好地符合 .关于波传播和平行折射率移动的理论结果可作为子程序用于LHCD的大型计算编码 ,使计算得到简化
A simplified but general low-dispersion clutter dispersion equation with low hybrid current drive (LHCD) parameters is deduced by expanding the small parameter δ = (ω2pe / ω2) -1. The effects of the ringing effect (R- 1 relationship and magnetic surface Shafranov displacement) caused by the parallel refractive index up or down and the slow wave and fast wave mode conversion conditions, get a low-noise hybrid wave can be propagated to the plasma sufficient conditions, which LHCD The observed density limit phenomenon is closely related to the experiment.Expected critical density necαf4 / 3 B2 / 3 A4 / 3 (f, B, A are the wave frequency, magnetic field strength and ring diameter ratio, respectively) The results of the LHCD experiments in the section tokamak are in good agreement.The theoretical results on wave propagation and parallel refractive index shift can be used as a subroutine for large computational coding of LHCDs to make the calculations simplified