基于数据挖掘的大用户用电特征分类方法研究

来源 :电子设计工程 | 被引量 : 0次 | 上传用户:vk2046
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为更好掌握大用户对象的耗电行为,实现对电力资源的按需分配,提出基于数据挖掘的大用户用电特征分类方法。计算大用户对象的集中用电量,通过划分用户消耗行为的方式,确定具体的耗电周期数值。在此基础上,研究用电用户所属类别,按照高维负荷数据的降维需求,提取用电行为模式的实际特征,实现基于数据挖掘的大用户用电特征分类方法的顺利应用。对比实验结果表明,应用新型特征分类方法后,大用户对象的平均耗电周期缩短至6.48 min,而最大电压升值却只能达到56.7 V,可准确掌握大用户对象耗电特征。
其他文献
移动互联网环境下,对海量用户数据行为的研究,可以提升用户数据的应用价值,促进商业模式的创新。大数据环境下为满足对内对外应用支撑能力以及数据开放共享能力需求,在PaaS技术应用下完成多用户架构,建构相应的大数据云化平台,支撑大数据平台能力开放建设。在PaaS技术下完成大数据云化平台的建构,完成整体架构,实现能力集成、多应用类型的分层调度、多租户及其资源调度管理以及全局优化的YARN调度技术,在完成的平台应用实践分析中发现,这一系统不但满足了相应的技术需求,同时在硬件资源准备时间、开发工具准备时间、数据准备时
现有的变压器故障推演系统推演误差大、故障诊断时间长,为此,基于大数据关联挖掘技术设计了一种新的变压器故障推演系统。利用防火墙、特殊交换机、信息数据库组建系统硬件环境,然后通过关联分析、故障诊断、聚类推演实现软件推演程序的设计。实验结果表明,与传统系统相比,基于大数据关联挖掘的变压器故障推演系统能够更有效地降低推演误差,缩短诊断时间。
在线教育因其系统化、海量化、便捷化以及可以实现精准推送服务而被广泛应用。传统的课程推送模型通常依靠深度学习算法进行模型训练,利用其特征提取学习能力对系统的隐藏特征进行提取。在解决抓取数据过程中出现稀疏问题的同时,也对计算机性能提出了更高的要求,模型训练需要耗费大量的时间。文中针对上述传统课程推送模型算法的不足,将多层神经元模型算法与个性化推荐算法进行结合,并对课程数据进行训练验证。实验结果表明,文中所建立深度神经网络推荐模型的MAE值相较于传统算法有明显的下降,同时训练迭代次数也大幅减小,说明提出的算法模