论文部分内容阅读
随着识别率和实时性的提高,卷积神经网络目标检测算法的计算复杂度和内存需求急剧增加,难以应用在小尺寸和低功耗的嵌入式平台上.本文在分析现有目标检测神经网络模型结构的基础上,根据FPGA高实时性、低功耗以及并行处理的特点,提出了一种在FPGA上高速运算的神经网络模型规整化方法.在此方法指导下设计改进了一款目标检测神经网络模型结构,包括删除LRN层、Scale层的融合和替换Leaky-ReLU为ReLU.通过在voc2007数据集上的对比实验验证了算法结构的有效性,在PC上其速度相比传统YOLO-V1算法