论文部分内容阅读
Silica-dispersed NiMo hydrodesulfurization catalysts were synthesized by the deposition-precipitation method. For comparative purposes, bulk NiMo catalysts were obtained by co-precipitation. The silica-dispersed NiMo catalyst had highly active metals content. Silica was employed to disperse active metals for full utilization of active components. The BET analysis showed that the silica-dispersed NiMo catalysts had a high surface area (147.0 m2/g) and pore volume (0.27 mL/g), whereas the bulk NiMo catalysts exhibited a very low surface area (87.5 m2/g). Transmission electron microscopy results proved that the active components were dispersed on the SiO2 substrate. X-ray diffraction patterns of the silica-dispersed NiMo catalyst and the bulk NiMo catalyst were indexed to NiMoO4. The hydrodesulfurization activity of silica-dispersed NiMo catalysts was much higher than that of reference catalysts and could be up to twice greater than those of commercial NiMo alumina-supported systems per gram of catalyst. The activity testing results also demonstrated that the silica-dispersed NiMo catalyst was an effective hydrodesulfurization catalyst.