论文部分内容阅读
利用对偶思想,有时可以大大减少运算量.所谓对偶式,就是成对出现的对称结构.在三角函数的求值问题中,如果将某个三角式中的角的关系转化为同角互余的弦值,那么得到的式子叫做原式的对偶式.在化简求值或证明一些三角函数问题时,如果能灵活地运用对偶的数学思想,合理地构造出对偶式,并对原式和对偶式进行和、差或积的计算,我们就可以使问题得到巧妙的解决.
The use of dual thinking sometimes can greatly reduce the amount of computation.The so-called duality, is the symmetrical structure of pairs.In the evaluation of trigonometric functions, if a triangle in the relationship between the angle into the same angle with each other In the process of simplifying the evaluation or proving some trigonometric functions, if we can flexibly use the dual mathematics to construct the duality reasonably, Duality and, difference or product of the calculation, we can make the problem be cleverly solved.