论文部分内容阅读
社区发现是当前复杂网络与数据挖掘的热点,非负矩阵分解是社区发现的常用手段。针对当前非负矩阵分解的社区发现算法,为提高算法的准确率与可解释性,提出多阶邻居节点的概念,在小世界模型的基础上构建了规模可控的多阶复合信息矩阵,用后处理的方法减少了算法中随机因素带来的不稳定性。对于真实网络与人工网络的实验证明,新背景下的算法较原算法在性能上有一定的提升。