论文部分内容阅读
基于Fels-Olver等变活动标架理论,借助构造活动标架的经典方法,得到了平面上欧几里得曲线的不变量和微分不变量,即曲率和曲率关于弧长参数的导数(包括关于弧长参数的所有高阶导数).由这些欧几里得微分不变量可以构造出曲线的欧几里得签名曲线,而签名曲线在刚性运动下是不变的.在计算机视觉中,签名曲线可以广泛地用于对象识别、视觉跟踪和对称检测.此外,在Cartan等价理论是签名曲线的基础理论支撑下,结合微分不变量在对象识别方面的抗噪优势,对签名曲线进行数值逼近,并用此方法给出若干欧几里得曲线的微分不变签名