论文部分内容阅读
当标准的CSO算法被应用于求解高维复杂优化问题时,存在易陷入局部最优解与较差的收敛精度等明显缺陷。本文提出了一种基于Cat混沌与柯西变异的改进鸡群优化算法(ICSO),然后使用6个标准函数对ICSO算法进行了仿真寻优,结果表明,相比PSO算法、BA算法和CSO算法,ICSO算法具有更强的跳出局部收敛的能力,且寻优精度也有显著提高。