论文部分内容阅读
High-frequency metre-scale cycles are present within the Lower-Middle Ordovician carbonate successions in northern Tarim Basin, NW China. These metre-scale cycles were variably dolomitised from top to bottom. Three types of replacive dolomites were recognised, including dololaminite(very finely to finely crystalline, planar-s to nonplanar-a dolomite;type-1), patterned dolomite(finely crystalline, planar-s dolomite; type-2), and mottled dolomite(finely to medium crystalline,nonplanar-a(s) dolomite; type-3). Petrographic evidence indicate these dolomites were primarily deposited in supratidal to restricted subtidal environments, and formed in near-surface to shallow burial realms. Geochemically, all types of dolomites have similar δ13C and 87Sr/86 Sr ratios comparable to calcite precipitated in equilibrium with the Early-Middle Ordovician seawater. These geochemical attributes indicate that these dolomites were genetically associated and likely formed from connate seawater-derived brines. Of these, type-1 dolomite has δ18O values(.4.97‰ to.4.04‰ VPDB) slightly higher than those of normal seawater dolomite of the Early-Middle Ordovician age. Considering the absence of associated evaporites within type-1 dolomite, its parental fluids were likely represented by slightly evaporated(i.e., mesosaline to penesaline) seawater with salinity below that of gypsum precipitation. More depleted δ18O values(.7.74‰ to.5.20‰ VPDB) of type-2 dolomite and its stratigraphic position below type-1 dolomite indicate the generation of this dolomite from mesosaline to penesaline brines at higher temperatures in near-surface to shallow burial domains. Type-3 dolomite yields the most depleted δ18O values(–9.30‰to –7.28‰ VPDB), pointing to that it was most likely formed from coeval seawater-derived brines at highest temperatures in a shallow burial setting. There is a downward decreasing trend in δ18O values from type-1 through type-2 to type-3 dolomites, and in abundance of dolomites, indicating that the dolomitising fluids probably migrated downward from above and persisted into shallow burial conditions.
High-frequency meter-scale cycles are present within the Lower-Middle Ordovician carbonate successions in northern Tarim Basin, NW China. These types of replacive dolomites were recognized, including dololaminite (very type-1, patterned dolomite (finely crystalline, planar-s dolomite; type-2), and mottled dolomite (finely to medium crystalline, nonplanar-a dolomite; type-3). Petrographic evidence indicate these dolomites were deposited in supratidal to restricted subtidal environments, and formed in near-surface to shallow burial realms. Geochemically, all types of dolomites are similar δ13C and 87Sr / 86 Sr ratios comparable to calcite precipitated in equilibrium with the Early-Middle Ordovician seawater. These geochemical attributes indicate that these dolomites were genetically associated and likely formed from connate seawater-derived brine s. Of these, type-1 dolomite has δ18O values (.4.97 ‰ to.4.04 ‰ VPDB) slightly higher than those of normal seawater dolomite of the Early-Middle Ordovician age. Considering the absence of associated evaporites within type-1 dolomite, its parental fluids were likely represented by slightly evaporated (ie, mesosaline to penesaline) seawater with salinity below that of gypsum precipitation. More depleted δ18O values (.7.74 ‰ to.5.20 ‰ VPDB) of type-2 dolomite and its stratigraphic position below type -1 dolomite indicate the generation of this dolomite from mesosaline to penesaline brines at higher temperatures in near-surface to shallow burial domains. Type-3 dolomite yields the most depleted δ18O values (-9.30 ‰ to -7.28 ‰ VPDB), pointing to that it was most likely formed from coeval seawater-derived brines at highest temperatures in a shallow burial setting. There is a downward decreasing trend in δ18O values from type-1 through type-2 to type-3 dolomites, and in abundance of dolomites, indicating that the dolomitising fluids probably migrated downward from above and persisted into shallow burial conditions.