论文部分内容阅读
Based on spectral ratio method, a joint inversion method was used to obtain parameters of Lg wave attenuation and site response. The inversion method allows simple and direct (two-parameter) determination of Lg wave attenua- tion and site response from sparse spectral data, which are not affected by radiation pattern factor and different response of same instrument after geometrical spreading. The method was used successfully for estimating site re- sponse of stations of Zhejiang Seismic Network and measuring Lg wave attenuation. The study is based on 20 earth- quakes occurred in northeast of Taiwan with magnitude MS5.0~6.7 and 960 seismic wave records from 16 stations in Zhejiang area from 2002 to 2005. The parameters of site response and Lg attenuation were calculated with a fre- quency interval of 0.2 Hz in the range of 0.5 Hz to 10 Hz. Lg wave attenuation coefficient corresponding to U-D, E-W and N-S components are γ ( f )=0.00175 f 0.43485, γ ( f )=0.00145f 0.48467 and γ ( f )=0.0021f 0.41241, respectively. It is found that the site response is component-independent. It is also found that the site response of QIY station is significant above the frequency of 1.5 Hz, and that the site response of NIB station is low for most frequency
Based on spectral ratio method, a joint inversion method was used to obtain parameters of Lg wave attenuation and site response. The inversion method allows simple and direct (two-parameter) determination of Lg wave attenua- tion and site response from sparse spectral data, which are not affected by radiation pattern factor and different response of same instrument after geometrical spreading. The method was used successfully for estimating site re- sponse of stations of Zhejiang Seismic Network and measuring Lg wave attenuation. The study was based on 20 earth-quakes occurred in northeast of Taiwan with magnitude MS5.0 ~ 6.7 and 960 seismic wave records from 16 stations in Zhejiang area from 2002 to 2005. The parameters of site response and Lg attenuation were calculated with a frequency of 0.2 Hz in the range of 0.5 Hz to 10 Hz. Lg wave attenuation coefficient corresponding to UD, EW and NS components are γ (f) = 0.00175 f 0.43485, γ (f) = 0.00145f 0.48467 and γ (f) = 0.0021f 0.41241, respectively. It is found that the site response is component-independent. It is also found that the site response of QIY station is significant above the frequency of 1.5 Hz, and that the site response of NIB station is low for most frequency