论文部分内容阅读
提出了基于S变换和弹性BP神经网络结构(RPROP)的电能质量扰动自动分类方法。通过S变换对电能质量扰动信号进行时频分析,有效实现对各种扰动信号时频特征量的输出,并确定特征量的最优组合来增加弹性BP神经网络分类的精度。同时研究了在不同噪声条件下弹性BP神经网络分类的敏感度。测试结果显示,该方法能有效地对电能质量扰动信号进行分类。