论文部分内容阅读
This paper presents an innovative approach to reusing waste tile granules (TG) and ceramic polishing powder (PP) to produce high performance ceramic tiles. We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%. The formulations included a small amount of borax additive of a mass fracton between 0.2%and 1.2%. The effects of these industrial by-products on compressive strength, water absorption and microstructure of the new ceramic tiles were investigated. The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added. Improvement of the compressive strength may be achieved when TG (up to 25.0%)and PP (up to 2.0%) are both used at the same time. In particular, the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux. Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles, resulting in a dense product with high compressive strength and low water absorption.