Novel self assembly behavior for γ-alumina nanoparticles

来源 :Particuology | 被引量 : 0次 | 上传用户:lihai3120
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In this study,self assembly behavior was induced for γ-alumina nanoparticles by adsorption of dimethyl disulfide.Following this trend,we have developed a chemical process to obtain γ-alumina in the nano scale.Scanning electron microscopy images of the prepared γ-alumina showed big and strong agglomeration of the nanoparticles indicating that these nanoparticles have strong surface forces.Transmission electron microscopy images confirmed that the γ-alumina nanoparticles 3-7 nm in size were converted to uniform spherical shape in the size range of 1-2 mm after shaking with dimethyl disulfide in the presence of n-hexane at room temperature.This phenomenon did not appear in the case of alumina in the micro scale.The surface properties of the prepared γ-alumina in the nano scale were characterized and compared with the γ-alumina in the micro scale by using low temperature nitrogen adsorption-desorption system,indicating that the specific surface area of the prepared γ-alumina nanoparticles is larger than that of the γ-alumina in the micro scale.Furthermore,micro-and meso-pores were observed for the γ-alumina nanoparticles while only mesoporous structure was detected for the γ-alumina in the micro scale.These experimental results suggested that the self assembly behavior of the γ-alumina nanoparticles may be due to the selective adsorption of dimethyl disulfide in the micropores of these nanoparticles to act as bridge linking the nanoparticles. In this study, self assembly behavior was induced for γ-alumina nanoparticles by adsorption of dimethyl disulfide. Following this trend, we have developed a chemical process to obtain γ-alumina in the nano scale. Scanning electron microscopy images of the prepared γ-alumina showed big and strong agglomeration of the nanoparticles indicating that these nanoparticles have strong surface forces. Transmission electron microscopy confirmed that the γ-alumina nanoparticles 3-7 nm in size were converted to uniform spherical shape in the size range of 1-2 mm after shaking with dimethyl disulfide in the presence of n-hexane at room temperature. This phenomenon did not appear in the case of alumina in the micro scale. The surface properties of the prepared γ-alumina in the nano scale were characterized and compared with the γ -alumina in the micro scale by using low temperature nitrogen adsorption-desorption system, indicating that the specific surface area of ​​the prepared γ-alumina nanopar γ-alumina in the micro scale. fürthermore, micro-and meso-pores were observed for the γ-alumina nanoparticles only in mesoporous structure was detected for the γ-alumina in the micro scale. suggested that the self assembly behavior of the γ-alumina nanoparticles may be due to the selective adsorption of dimethyl disulfide in the micropores of these nanoparticles to act as bridge linking the nanoparticles.
其他文献