论文部分内容阅读
通过定量法确定瓦斯浓度数据具有混沌特性,计算瓦斯序列的延迟时间和最优嵌入维数并对其相空间重构。在混沌分析的基础上结合人工神经网络技术,针对传统RBFNN模型参数确定的问题,提出通过粒子群算法对网络参数优化,建立了CT—PSO—RBFNN预测模型。利用实际煤矿监测数据对提出的模型训练预测,并与其他3种模型横向对比,得出性能排序为CT—PSO—RBFNN〉T—PSO—RBFNN〉CT—RBFNN〉T—RBFNN。结果证明,CT—PSO—RBFNN模型预测精度高、预测误差小、性能稳定,能够为瓦斯灾害的预报预警提