论文部分内容阅读
针对现有红外图像分辨率低、质量不高的问题,提出了基于通道注意力与迁移学习的红外图像超分辨率重建方法。该方法设计了一个深度卷积神经网络,融入通道注意力机制来增强网络的学习能力,并且使用残差学习方式来减轻梯度爆炸或消失问题,加速网络的收敛。考虑到高质量的红外图像难以采集、数目不足的情况,将网络的训练分成两步:第一步使用自然图像来预训练网络模型,第二步利用迁移学习的知识,用较少数量的高质量红外图像对预训练的模型参数进行迁移微调,使模型对红外图像的重建效果更优。最后,加入多尺度细节滤波器来提升红外重建图像的