论文部分内容阅读
Construction of optimal gate operations is significant for quantum computation.Here an efficient scheme is pro-posed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED).Two four-level artificial atoms of Cooper-pair box circuits,having sufficient level anharmonicity,are placed in a common quantized field of circuit QED and are driven by individual classical microwaves.Without the effect of cross resonance,one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adia-baticity.With the assistance of cavity bus,a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings.We further consider the gate realizations by adjusting the microwave fields.With the accessible decoherence rates,the shortcut-based gates have high fidelities.The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.