论文部分内容阅读
恰可察觉失真模型(JND)是一种人眼感知模型,它是图像/视频压缩中去除冗余最为有效的方法之一。针对现有JND模型对比掩盖效应(CM)的计算不够完善及深度信息的考虑不够准确的问题,文中提出了一种融合深度基于灰度共生矩阵的JND模型。首先,采用总变分分解模型将图像分解为结构部分和纹理部分,对结构部分采用Canny算子处理,对纹理部分采用灰度共生矩阵处理,两个部分形成更准确的CM模型;结合背景亮度掩盖效应,建立了一种基于灰度共生矩阵的像素域JND模型。然后,在对人眼深度感知进行研究的基础上,引入新的深度加