论文部分内容阅读
电力系统中的动态环境经济调度(DEED)是一个多变量、强约束、非凸的多目标优化问题,传统方法很难进行求解。基于微分进化(DE)算法的快速收敛性和粒子群优化(PSO)算法的搜索多样性,提出一种融合2种算法优点的混合DE-PSO多目标优化算法来求解DEED问题,该算法基于外部存档集和Pareto占优原则,采用自适应参数的DE和PSO双种群更新策略以及一种改进的Pareto解集裁剪方法。引入3种指标评价算法的性能,并采用模糊决策技术从Pareto前沿中提取折中解以供决策者进行选择。经典算例的仿真结果表明所提方法