论文部分内容阅读
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. The PID gain parameters are optimized by the genetic algorithm (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experi- mental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as com- pared with the classical PID controller and the compensator controller.
A proportional integral derivative (PID) controller is designed and attached to electro-hydraulic servo actuator system (EHSAS) to control the angular position of the rotary actuator which control the movable surface of space vehicles. (GA). The controller is verified on the new state-space model of servo-valves attached to the physical rotary actuator by SIMULINK program. The controller and the state-space model are verified experimentally. Simulation and experi- mental results verify the effectiveness of the PID controller adaptive by GA to control the angular position of the rotary actuator as com- pared with the classical PID controller and the compensator controller.