论文部分内容阅读
为了实现对频谱资源最大限度再利用,有效缓解无线频谱资源紧缺的问题,通过分析无线认知网络共享方式下的物理连接和图论模型,建立了具有不同干扰强度频谱分配数学模型,并将此模型转换为以信道干扰系数最小化、次网络效益最大化和主用户最大干扰最小化的多目标优化问题,进而采用多目标改进遗传算法对认知无线网络进行频谱共享方案设计,且对其有效性进行了仿真分析.仿真结果表明,采用所提出的优化算法进行频谱分配与图论K-最大割方法相比,能更好地实现网络效益最大化,同时能减少对主系统的干扰.
In order to maximize the reuse of spectrum resources and effectively alleviate the shortage of radio spectrum resources, a mathematical model of spectrum allocation with different interference intensity is established by analyzing the physical connection and graph theory model in wireless cognitive network sharing mode. The model is transformed into a multi-objective optimization problem with minimization of channel interference coefficients, maximization of sub-network benefits, and minimization of main-user interference. A multi-objective improved genetic algorithm is then used to design a spectrum sharing scheme for cognitive wireless networks, The simulation results show that compared with the graph theory K-maximum cut method, the proposed algorithm can maximize the network efficiency and reduce the interference to the main system.