论文部分内容阅读
研究的目的是建立对影响大宗商品期货价格变化趋势的关联风险特征因子的提取框架和配套的推断逻辑原理。具体来讲,以金融科技中大数据概念为出发点,利用人工智能中的吉布斯随机搜索(Gibbs Sampling)算法为工具,全面地陈述如何提取高度关联大宗商品期货价格变化的风险特征因子的流程和配套的逻辑原理,即采用(在马尔科夫链蒙特卡洛(MCMC)框架下)人工智能中的吉布斯随机抽样算法,结合OR值(Odds Ratio)作为关联分类和验证标准,实现从大量风险因子的数据中提取与大宗商品期货(铜)价格趋势变化相关的特征因子