论文部分内容阅读
针对传统滑动窗更新模型时忽略最新数据和待测样本相似性,以及即时学习未考虑相似样本和待测样本的时间间隔问题,采用基于最优定界椭球-极限学习机算法(optimal bounding ellipsoid-extreme learning machine,OBE-ELM)的自适应软测量建模方法将即时学习和滑动窗模型相结合来解决上述问题。首先用初始窗口数据建立ELM模型。当有待测样本到来时,利用SPE和T~2统计量判断修正模型的必要性;需要修正时,采用即时学习在最新窗口中寻找与待测样本相似的样本集并通过OBE