论文部分内容阅读
提出一套支持向量机和多目标进化算法的融合建模技术(SVM-EMO)以及计算框架,并采用差分进化算法(DE)选择支持向量机参数,并将SVM-EMO应用于一个钢铁企业产品质量管理实例,与人工神经网络的建模结果相比,所提框架结果拟合误差更小,精度更高,能够更好地解决质量管理研究中的多目标非线性优化问题.最后根据模型求解结果,给出了相应的生产建议.