论文部分内容阅读
This paper presents an optimized topology for urban traffic sensor networks. Small world theory is used to improve the performance of the wireless communication system with a heterogeneous transmission model and an optimal transmission radius. Furthermore, a series of simulations based on the actual road network around the 2nd Ring Road in Beijing demonstrate the practicability of constructing artificial “small worlds”. Moreover, the particle swarm optimization method is used to calculate the globally best distribution of the nodes with the large radius. The methods proposed in this paper will be helpful to the sensor nodes deployment of the new urban traffic sensor networks.
This paper presents an optimized topology for urban traffic sensor networks. Small world theory is used to improve the performance of the wireless communication system with a heterogeneous transmission model and an optimal transmission radius. Furthermore, a series of simulations based on the actual road network around the 2nd Ring Road in Beijing demonstrate the practicability of constructing artificial “small worlds ”. Moreover, the particle swarm optimization method is used to calculate the globally best distribution of the nodes with the large radius. The methods proposed in this paper will be helpful to the sensor nodes deployment of the new urban traffic sensor networks.