论文部分内容阅读
针对传统典型日负荷特性选取方法误差较大的问题,文章提出了基于K-means的典型日负荷特性计算方法。首先,以月为尺度对全年日负荷特性曲线进行分组。其次,计算日负荷特性曲线的最大值、最小值、最大值发生时间、最小值发生时间、峰谷差率5个指标对其进行归一化,利用K-means聚类分析方法对每组样本数据5个特征值进行聚类分析。最后,在排除突变负荷特性后,选择距离聚类中心最远的样本为本月典型日负荷特性。结果表明:所提方法能有效选取典型日负荷特性曲线。