论文部分内容阅读
针对区间数模糊c均值聚类算法存在模糊度指数m无法准确描述数据簇划分情况的问题,对点数据集合的区间Ⅱ型模糊c均值聚类算法进行拓展,将其扩展到区间型不确定数据的聚类中。同时,分析了区间数的区间Ⅱ型模糊c均值聚类算法的收敛性,以确定模糊度指数m1和m2的取值原则。基于合成数据和实测数据的仿真实验结果表明:区间数的区间Ⅱ型模糊c均值聚类算法比区间数的模糊c均值聚类算法的聚类效果好。