论文部分内容阅读
Application of simple and locally based erosion assessment methods that fit to the local condition is necessary to improve the performance and efficiency of soil conservation practices. In this study, rill erosion formation and development was investigated on the topo-sequence of three catchments(300-500 m slope length); and on agricultural fields(6 m and 14 m slope lengths) with different crop-tillage surfaces during erosive storms.Rill density and rill erosion rates were measured using rill cross section survey and close range digital photogrammetry. Rill formation and development was commonly observed on conditions where there is wider terrace spacing, concave slope shapes and unstable stone terraces on steep slopes. At field plot level, rill development was controlled by the distribution and abrupt change in the soil surface roughness and extent of slope length. At catchment scale, however, rill formation and development was controlled by landscape structures, and concavity and convexity of the slope. Greater rill cross sections and many small local rills were associated to the rougher soil surfaces. For instance, relative comparison of crop tillage practices have showed that faba-beantillage management was more susceptible to seasonal rill erosion followed by Teff and wheat tillage surfaces under no cover condition. Surface roughness and landscape structures played a net decreasing effect on the parallel rill network development. This implies that spatial and temporal variability of the rill prone areas was strongly associated with the nature and initial size of surface micro-topography or tillage roughness. Thus, it is necessary to account land management practices, detail micro-topographic surfaces and landscape structures for improved prediction of rill prone areas under complex topographic conditions. Application of both direct rill cross section survey and close range digital photogrammetric techniques could enhance field erosion assessment for practical soil conservation improvement.
Application of simple and locally based erosion assessment methods that fit to the local condition is necessary to improve the performance and efficiency of soil conservation practices. In this study, rill erosion formation and development was investigated on the topo-sequence of three catchments (300- 500 m slope length); and on agricultural fields (6 m and 14 m slope lengths) with different crop-tillage surfaces during erosive storms. Rill density and rill erosion rates were measured using rill cross section survey and close range digital photogrammetry. Rill formation and development was generally observed on conditions where there is wider terrace spacing, concave slope shapes and unstable stone terraces on steep slopes. At field plot level, rill development was controlled by the distribution and abrupt change in the soil surface roughness and extent of slope length At catchment scale, however, rill formation and development was controlled by landscape structures, and concavity and con vexity of the slope. Greater rill cross sections and many small local rills were associated to the rougher soil surfaces. For instance, relative comparison of crop tillage practices have showed that faba-beantillage management was more susceptible to seasonal rill erosion followed by Teff and wheat This roughness and landscape structures played a net decreasing effect on the parallel rill network development. This implies that spatial and temporal variability of the rill prone areas was strongly associated with the nature and initial size of surface micro-topography or tillage roughness. Thus, it is necessary to account land management practices, detail micro-topographic surfaces and landscape structures for improved prediction of rill prone areas under complex topographic conditions. Application of both direct rill cross section survey and close range digital photogrammetric techniques could enhance field erosion assessment for practical soil conservation improvement.