论文部分内容阅读
为获得更准确的预测结果及更优良的预测性能,本文提出了一个新模型.该模型将遗传算法和退火相结合并进化BP神经网络,称为GASANN模型.通过预测中国广西柳江年水位数据,将新模型的性能与加权移动平均(WMA)、逐步回归(SR)以及自回归移动平均(ARIMA)进行比较,结果显示新模型性能优于其他模型.因此,该非线性模型可作为获取准确水位预测及改善水位预测性能的可选模型之一.