论文部分内容阅读
该文从基本的智能技术——神经网络(NN)和模糊系统(FS)技术出发,探讨了神经网络与模糊系统相结合的基本理论,提出了一种基于模糊RBF神经网络的非线性滤波的方法。该方法将模糊逻辑的知识表达以及推理能力和RBF网络的快速学习和泛化能力结合起来,网络结构参数可按实际问题调整,对信号中有色噪声进行较高精度的逼近,来达到非线性滤波的目的。该滤波方法显示出很强的处理问题的能力,学习速度快,仿真结果表明了这种方法的有效性和可性行。