论文部分内容阅读
Dissimilar friction stir welding between 5052 Al alloy and AZ31 Mg alloy with the plate thickness of 6 mm was investigated. Sound weld was obtained at rotation speed of 600 r/min and welding speed of 40 mm/min. Compared with the base materials, the microstructure of the stir zone is greatly refined. Complex flow pattern characterized by intercalation lamellae is formed in the stir zone. Microhardness measurement of the dissimilar welds presents an uneven distribution due to the complicated microstructure of the weld, and the maximum value of microhardness in the stir zone is twice higher than that of the base materials. The tensile fracture position locates at the advancing side (aluminum side), where the hardness distribution of weld shows a sharp decrease from the stir zone to 5052 base material.