论文部分内容阅读
针对传统的协同过滤推荐算法在高校图书推荐场景中存在缺乏显性评分、推荐精度低等问题,提出一种融合时间上下文的改进协同过滤图书推荐模型。基于图书历史借阅记录,首先构建基于借阅时长的读者—图书偏好度模型,将读者历史借阅记录中隐含的借阅偏好信息转换成显性的读者—图书评分;然后考虑读者借阅偏好随时间动态变化因素,引入时间衰减因子对读者—图书评分模型进行修正,最后应用隐语义模型进行个性化图书推荐。