无人机勘测技术在皖南山区地质灾害识别中的应用

来源 :安徽地质 | 被引量 : 0次 | 上传用户:catbull
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
皖南山区是安徽省地质灾害高发区和地质灾害重点防治区,地质灾害识别对皖南山区地质灾害治理和防治工作至关重要.笔者对皖南山区17个滑坡点、5个崩塌点和2处泥石流等典型地质灾害点进行调查,采用无人机倾斜摄影实景建模技术,对灾害点进行摄影测量,建立地质灾害体的三维影像模型.通过三维影像模型和野外调查,总结归纳了皖南山区主要地质灾害无人机影像识别标志.三维影像建模的识别标志可以为皖南山区突发性地质灾害精准识别和快速勘查、救援等工作提供数据支持.
其他文献
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的
随着近年来工业化进程的加速,能源消耗急剧增加,同时伴随着环境的恶化,开发可再生能源的需求日益迫切.氢能因具有高能量密度、零碳排放和可循环利用性而被认为是化石燃料最理想的替代者之一.当下几种制氢技术(如水电解法、丙烷脱氢法和石脑油热解法等)通常需要高温或高功耗,因此其大规模应用受到限制.半导体光催化分解水制氢技术可以将太阳能直接将转化为氢能,为解决能源和环境危机提供了新的契机.ZnO是一种常见的n型半导体,由于其具有优异的环境相容性、高氧化还原电位和低成本等特点,被认为是光催化制氢的理想材料.然而,由于其光
电催化水分解是一种可持续的绿色产氢技术,该技术在工业化的大规模应用急需开发高效稳定的非贵金属催化剂,用于提高析氧反应(OER)的反应速率.研究发现,钙钛矿氧化物是优异的OER催化剂,但是对于发生在催化剂-电解质固液界面上的反应机理仍有争论.目前普遍认为,在OER反应过程中,水分子吸附在金属氧化物催化剂表面的金属活性中心上,并进行连续四步的质子耦合电子转移步骤(PCET),通过“吸附演化机制”(AEM)的方式氧化成氧气分子.根据该机制,调整钙钛矿材料的电子结构来控制表面性质已被广泛认为是提高OER活性的有效
近几十年来,聚合物电解质膜燃料电池(PEMFC)因其在零排放汽车、固定式和便携式发电设备中的应用而得到迅速发展.燃料电池的阴极氧还原反应(ORR)和阳极氢氧化反应(HOR)常用的催化剂为Pt基催化剂,因此整个燃料电池系统的成本高昂.而ORR的反应速率比HOR慢得多,阴极上的Pt消耗量远高于阳极上.为了降低燃料电池Pt的用量,近年来,许多类型的非铂或低铂ORR电催化剂被报道作为传统Pt基催化剂的可能替代品,以降低成本促进燃料电池的大规模应用.为了评估新催化剂的ORR性能,一般来说,都是以最先进的商业Pt/C
催化剂由于具有降低电化学过电位和改善动力学条件的能力,在各种储能器件中起着至关重要的作用.在锂离子电池中,首圈放电过程中形成的固体电解质界面膜,通常被认为是一旦形成就稳定不分解的.而在过渡金属的催化下,这种电解质分解衍生的聚合物凝胶状膜(PGF)能可逆地形成和分解.这种过渡金属催化机制可以进行催化储锂,即形成的PGF具有存储锂离子的能力,可提供额外的储锂容量,并且形成的PGF对枝晶的穿刺起到保护作用,提高锂离子电池的安全性.然而,由于锂离子电池中非常复杂的反应环境,常规测试手段很难对过渡金属的催化作用进行
现代化城市建设引起的环境变化使得传统物探野外数据采集有着很大的局限性,特别是在人文环境干扰严重的城市建成区,亟需引入新的物探手段来弥补这方面的不足.微动探测与地质雷达的组合在建筑场地勘查中有很好的效果,能够准确定位圈定地下空间隐患.笔者在安徽省太湖县某小区,利用微动探测和地质雷达综合物探方法,通过微动探测建立三维速度模型,综合对比地质雷达反射界面,查明了研究区内地下10m以浅地层的地球物理特征,并结合地质资料和现场情况,分析了研究区内地下空间隐患成因,为研究区地下空间隐患评估、治理提供可靠的科学依据.
微动勘探技术采集天然源信号,是一种通过计算地下介质中的S波速度结构,探查地质构造的物探新技术.该技术不受电磁干扰、绿色环保,分辨率高、探测范围大、经济高效,在城镇等人口密集区有着传统物探手段不可比拟的优势.目前该技术被广泛应用于地热资源勘探[1,2]、工程地质勘探等,但是研究地下深度不大,基本在300m以浅.我单位在高分辨率频率-波数法理论基础上,对处理方法进行了改进,将其应用于中深部地质勘探,最大探测深度接近2km,取得了良好的勘探效果.
高效利用太阳能是解决当前能源危机和环境问题的有效途径.光催化制氢技术具有绿色环保、成本低等优势,且氢气可作为能源载体,其燃烧产物仅为水,因此被认为是实现高效利用太阳能的最佳途径之一.为更好地利用太阳能,研究者们致力于开发具有良好可见光活性的光催化剂.CdS因具有良好的电荷转移能力和在可见光区域强吸收的特性,在光催化制氢方面显示出较大的潜力和优势,成为研究热点.特别是,中空结构的CdS因可提供较大的比表面积和丰富的活性位点,有利于光捕获,表现出较好的光催化性能.人们在合理构建高性能CdS方面已经取得了较大进
直接甲醇燃料电池(DMFC)可以将甲醇的化学能转化为电能.甲醇在室温下是一种液体,很容易运输和低风险储存.在常用燃料中,甲醇热值较高且价格便宜,其单位价格热值甚至高于汽油.更重要的是,甲醇可以通过二氧化碳催化加氢制得.因此可以将可再生能源转化为氢气,并高效地存储在甲醇分子中.而燃料电池消耗甲醇后,产物只有二氧化碳和无污染的水.在未来,这种利用甲醇进行的碳回收过程可以实现接近零碳排放.基于上述优点,DMFC已成为近年来最有前途并有望应用于移动车辆的燃料电池之一.在DMFC中,最关键的步骤是甲醇的电催化氧化反
开发酸性条件下的析氧反应(OER)电催化剂是质子交换膜(PEM)电解水技术的核心问题.Ru基催化剂作为酸性OER中的基准催化剂,其OER活性被传统的协同质子-电子转移过程带来的比例关系所限制,仍然存在动力学迟缓的问题.基于荷电表面可能有利于加速OER动力学的认识,本文将具有赝电容性质的元素Pb加入Ru基催化剂中以提升OER活性.本文采用一种改进的溶胶-凝胶法制备得到RuPbOx电催化剂,用于酸性条件下高效和稳定的水氧化.高分辨透射电镜及X射线吸收谱结果表明,RuPbOx催化剂为约10 nm颗粒,Ru、Pb