论文部分内容阅读
设U=Tri(A,M,B)是三角代数,E是U的标准双边模,且δ,τ:A→E是两个映射(无可加或线性假设).利用代数分解方法,证明了三角代数上的可导映射对是可加的.即如果(Y)a,b∈U,有δ(ab)=δ(a)b+aτ(b),则δ是由U到E的可加广义导子,τ是由U到E的可加导子.作为应用,给出了上三角矩阵块代数和套代数上可导映射对的具体表达形式.