论文部分内容阅读
The Upper Eocene–Lower Oligocene Qianjiang Formation of the Jianghan Basin in central China consists of a 4 700-m-thick lacustrine succession, containing 1 800 m of halite deposits. The maximum thickness of the formation is 4 700 m, and includes 1 800 m of halite. We have identified eight third-order depositional sequences based on pinch-out and onlap stratigraphic patterns in 2-D and 3-D seismic data and well logs. The basin evolved from a deep to shallow under-filled lake during the Eocene–Oligocene interval. The main rock types are dark mudstones, halite, and siltstone/sandstone in the depocenter, and alternating mudstone and gypsum in shallower areas. The vertical succession indicates a strong sedimentary cyclicity. Depositional facies indicate the presence of two lake system types. Halite developed in a saline lake system, whereas clastic sediments were deposited in freshwater lake systems. The alternating sediment types indicate that the basin cycled repeatedly between saline and freshwater lake systems. This cyclicity was caused by availability of accommodation space that was controlled by a combination of climate change, tectonic subsidence and sediment supply; notably, the highest frequency cycles occurred at Milankovitch timescales controlled by the Earth’s orbital variations. The cyclic halite plays an important role in generating and preserving oil in the Qianjiang Formation of the Qianjiang depression.
The Upper Eocene-Lower Oligocene Qianjiang Formation of the Jianghan Basin in central China consists of a 4 700-m-thick lacustrine succession, containing 1 800 m of halite deposits. The maximum thickness of the formation is 4 700 m, and includes 1 800 m of halite. We have identified eight third-order depositional sequences based on pinch-out and onlap stratigraphic patterns in 2-D and 3-D seismic data and well logs. The basin evolved from a deep to shallow under-filled lake during the The main rock types are dark mudstones, halite, and siltstone / sandstone in the depocenter, and alternating mudstone and gypsum in shallower areas. The vertical succession indicates a strong sedimentary cyclicity. Depositional facies indicate the presence of two lake system types. Halite developed in a saline lake system, and clastic sediments were deposited in freshwater lake systems. The alternating sediment types indicate that the basin cycled between saline This cyclicity was was controlled by a combination of climate change, tectonic subsidence and sediment supply; notably, the highest frequency cyclo occurred in Milankovitch timescales controlled by the Earth’s orbital variations. The cyclic halite plays an important role in generating and preserving oil in the Qianjiang Formation of the Qianjiang depression.