论文部分内容阅读
This paper presents 2.5D scattering of incident plane SH waves by a canyon in layered half-space by the indirect boundary element method (IBEM). The free field response is carried out to give the displacements and stresses on the line which forms boundary of the canyon. The fictitious uniform moving loads are applied to the same line to calculate the Green’s functions for the displacements and stresses. The amplitudes of the loads are determined by the boundary conditions. The displacements due to the free field and from the fictitious uniform moving loads have to be added to obtain the whole motion. The numerical results are carried out for the cases of a canyon in homogenous and in one layer over bedrock. The results show that the 2.5D wave scattering problem is essentially different from the 2D case, and there exist distinct differences between the wave amplification by a canyon in layered half-space and that in homogeneous half-space. The reasons for the distinct difference are explored, and the effects of the thickness and stiffness of the layer on the amplification are discussed.
This paper presents 2.5D scattering of incident plane SH waves by a canyon in layered half-space by the indirect boundary element method (IBEM). The free field response is carried out to give the displacements and stresses on the line which forms boundaries of the The fictitious uniform moving loads are applied to the same line to calculate the Green’s functions for the displacements and stresses. The amplitudes of the loads are determined by the boundary conditions. The displacements due to the free field and from the fictitious uniform moving loads. The numerical results are carried out for the cases of a canyon in homogenous and in one layer over bedrock. The results show that the 2.5D wave scattering problem is essentially different from the 2D case, and there exist distinct differences between the wave amplification by a canyon in layered half-space and that in homogeneous half-space. The reasons for the distinct difference are exp lored, and the effects of the thickness and stiffness of the layer on the amplification are discussed.