论文部分内容阅读
阐述《概率论与数理统计》中极限性质及其在近似计算中的应用。马尔科夫不等式是许多概率不等式的基础,从马尔科夫不等式很容易得到切比雪夫不等式,从切比雪夫不等式得到大数定理,大数定理从理论上解释了用频率近似地作为事件发生概率的基本思想。中心极限定理则说明:独立同分布随机序列的前n项和可以用正态分布近似。这些结果所表现的是一种极限性质,为某些分布下概率的近似计算提供了便捷方法。