论文部分内容阅读
为了预测股票价格的短期走势,在预测算法中引进RBF神经网络,利用RBF神经网络具有唯一最佳逼近、无局部极小、学习速度快的特点,在预测股票行情时,能达到较高的精度。同时,为了优化RBF网络的输入参数结构,引入二次参数的概念,设计了基于灰关联理论的技术指标选择控制器,从众多的技术指标中选出部分最能反映股票近期趋势的指标,从而获得包含股市本质信息的低维输入,大幅度减少了运算量。最后,在综合两者优势的基础上构造了一种新型价值预测系统,该系统具有较快的运算速度和较高的预测精度。仿真实验表明,该方案是可行的。