论文部分内容阅读
针对目前基于深度学习的舰船目标斜框检测方法存在计算量大、效率低的问题,提出一种基于目标中心点的单阶段检测模型.由于舰船中心点不受舰船分布方向影响,模型主要思想是以目标中心点检测为基础,回归中心点处目标斜框的尺度和方向.首先设计特征提取网络,将卷积神经网络细节信息丰富的底层特征与语义信息丰富的高层特征融合起来形成特征图;然后将特征图输入到三个检测分支,分别预测目标中心点、中心点偏移值以及斜框的尺度与方向;设计组合损失函数对网络进行训练,并改进非极大值抑制算法以适应目标斜框检测的需要.在公开的SAR图像