论文部分内容阅读
针对在人脸特征点提取过程中模型预估能力不足,拟合过程中的非法形变导致的特征点提取速度慢和提取精度不高的问题,本文提出了一种基于主动表观模型(AAM)的人脸特征点提取算法的改进算法。将头部作初始分类,不同的头部姿态选取不同人脸模型进行拟合,这样能避免初始化模型与真实特征点位置相差过大,从而使得模型能更快的收敛,提高特征点提取速度。同时提出一种方法,对拟合过程中的形状变量加以限制,能有效过滤掉不满足人脸形状的特征点模型,防止拟合过程中的非法形变,使提取的人脸特征点更接近真实位置。实验结果表明,改进的基于