【摘 要】
:
胶体量子点是一种具备可溶液加工特性的零维半导体材料,在新型光电探测器、光伏电池、发光二极管以及化学传感器研究和开发中备受关注.硫化铅材料具有较大的激子波尔半径和德拜长度,量子尺寸效应显著,是胶体量子点研究领域的热点.量子点比表面积大、表面悬挂键多,胶体量子点表面配体对其物化特性有重要影响,因此可通过表面配体工程实现量子点半导体器件的功能设计与性能提升.本文对硫化铅胶体量子点表面配体工程的研究进展进行综述,重点讨论表面配体对其导电特性与化学活性的影响,同时对高性能硫化铅胶体量子点材料和功能器件的设计与应用进
【机 构】
:
华中科技大学光学与电子信息学院,武汉光电国家研究中心,武汉430074
论文部分内容阅读
胶体量子点是一种具备可溶液加工特性的零维半导体材料,在新型光电探测器、光伏电池、发光二极管以及化学传感器研究和开发中备受关注.硫化铅材料具有较大的激子波尔半径和德拜长度,量子尺寸效应显著,是胶体量子点研究领域的热点.量子点比表面积大、表面悬挂键多,胶体量子点表面配体对其物化特性有重要影响,因此可通过表面配体工程实现量子点半导体器件的功能设计与性能提升.本文对硫化铅胶体量子点表面配体工程的研究进展进行综述,重点讨论表面配体对其导电特性与化学活性的影响,同时对高性能硫化铅胶体量子点材料和功能器件的设计与应用进行了展望.
其他文献
2021年诺贝尔物理学奖授予了两位气候学家和一位理论物理学家,以表彰他们在“理解复杂物理系统领域所做出的开创性贡献”.诺贝尔物理学奖委员会巧妙地把地球气候系统问题与理论物理问题“统一”在一起,凸显对基于物理理论解决复杂现实世界问题,尤其是地球气候变化问题的高度重视,而非把评奖目标仅限于传统的物理学领域.
人类有5种感觉:视觉、听觉、嗅觉、味觉、触觉,此外还有温觉(包括热觉和冷觉)、痛觉等.历史发展的长河中,人体是如何感知物理世界的问题一直吸引着人类.然而,人类关于这些感觉的基础生物学层面的理解仍然十分有限.2021年诺贝尔生理学或医学奖授予感知觉研究领域,以表彰美国加州大学旧金山分校(University of Califomia,San Francisco,UCSF)的David Julius和Scripps研究所的Ardem Patapoutian在感知温度与触觉受体的发现上作出的深远而广泛的贡献.其
区域气候模式RegCM4分别在CSIRO-Mk3-6-0、EC-EARTH、HadGEM2-ES、MPI-ESM-MR和NorESM1-M五个全球气候模式驱动下,进行了水平分辨率为25 km的东亚区域气候变化试验.基于该试验的集合结果,在对结果进行误差订正的基础上,本文预估了RCP4.5温室气体排放路径下21世纪末期(2069~2098年)中国及其国家生态安全屏障区的柯本-特里瓦沙气候分类的变化.结果 表明,相比当代(1981~2010年),21世纪末期中国的气候型发生变化的面积比例为22%,其中青藏高原
人体通过触觉、听觉、视觉、味觉和嗅觉这五种基本的感觉过程来感受外界的物理和化学信号并做出响应.此外,环境中的高温(热)或低温(冷)刺激也能够被人体细胞中的受体所感知.温度感应过程以及触觉中的机械力刺激和响应与疼痛的产生有关,该方面的研究不仅有助于了解疼痛的本质,而且有望为疼痛的治疗提供新的靶点和启示.2021年度诺贝尔生理学或医学奖授予了加州大学旧金山分校的David Julius教授和斯克利普斯研究所(Scripps Research Institute)的Ardem Patapoutian教授,以表彰
中医药是古代朴素唯物论指导下形成的独具特色的医学理论和实践体系,也是中华民族同疾病斗争实践的经验和知识集成.然而,近年来中医药临床和基础研究相对滞后,疗效和安全性缺乏高质量循证医学证据的支持,导致临床定位不够精准,安全性问题时有发生[1].与此同时,西方现代医学则迅猛发展并逐渐占据临床的主导地位.针对中医药的优势和局限性,笔者认为中医药应加速与西方现代医学融合发展.
瘤棘奈氏虫(Netzelia tuberspinifera)是东亚特有种,属于有壳虫原生动物,壳体大小约为100 μm.本文首先在空间尺度上对中国88个湖库中瘤棘奈氏虫地理分布进行分析,发现瘤棘奈氏虫的分布与纬度、海拔和温度显著相关,分布在低纬度、低海拔、高温的亚热带和热带地区.重点以福建厦门汀溪水库连续4年时间序列样品和中国南方地区28座水库(14个流域)空间样品为基础,研究瘤棘奈氏虫种群时空变化规律及其影响因子.结果 表明,汀溪水库瘤棘奈氏虫种群密度为0~10.7 ind/L,存在显著的季节变化,水温
定量构效关系(QSAR)模型是填补化学品环境安全数据空缺的重要工具.QSAR模型需要明确定义的应用域,才能合理地用于化学品管理.本文回顾了应用域的3种概念:描述符域、结构域和机理域.基于案例,重点介绍了基于分子指纹与相似性度量指标而计算结构域的方法、结构域的特点和优势.讨论了结构.活性地貌(structurc-activ-ity landscape)中呈现的活性悬崖(activity cliffs)现象及其成因.为了更好地理解描述符的适用性,解释QSAR机制及合理选择应用域的表征方法,有必要认识预测终点(
内源性蛋白质交联通常指细胞内蛋白质分子间或蛋白质分子内中的两个氨基酸被肽键之外的共价键相连,其形成会对蛋白质构象和功能造成影响.质谱具有高通量、高灵敏度等特点,是大规模鉴定内源性蛋白质交联的工具之一.结合质谱在组学水平上对内源性蛋白质交联的研究工作层出不穷,但在样品处理、数据采集、定性分析、定量分析和生信分析等环节还有诸多问题仍待解决,构建一套完整的内源性蛋白质交联技术体系将极大推动交联组学研究的开展.因此,本文对内源性蛋白质交联相关研究工作进行了概述,总结了目前内源性蛋白质交联研究中取得的重要成果,梳理
微塑料作为一种新兴污染物,由于粒径较小且性质稳定,能够作为水环境中污染物的载体,并对水生生物具有毒性危害.排放到水环境中的微塑料颗粒经过光照和机械破碎等风化过程后,其表面形态和理化性质会发生改变,并分解破碎成为粒径更小的微米级或纳米级塑料颗粒.本文系统地综述了微塑料在水环境中的光老化和破碎过程.这是由于光老化当前被认为是影响微塑料风化破碎最主要的途径,研究微塑料的光老化机制对于评价水环境中微塑料的形成过程及潜在生态风险有重要意义.微塑料在水环境中的光老化过程本质上是自由基引发的链式反应过程,通过改变微塑料
肿瘤微环境调控概念的兴起极大推进了智能纳米药物的发展.作为治疗或递药靶点,基质和血管等微环境成分在基因层面上较肿瘤细胞更稳定,并且提供了在递药过程中绕过部分生物屏障的可能.我们的研究表明,充分利用纳米材料的固有优势和功能化潜力,针对肿瘤微环境精确设计纳米药物,对于开发和实现新的纳米抗肿瘤策略至关重要.例如,利用高精度自组装的核酸纳米机器,能够实现强效凝血分子在血液循环中的安全递送;利用多重释药的纳米结构局域性清除肿瘤相关血小板,可提高纳米药物穿透肿瘤血管内皮屏障的效率等.基于以上学术思想,近年来,我们系统