论文部分内容阅读
针对扩展卡尔曼滤波器(EKF)在系统模型不确定时存在鲁棒性差、精度低的问题,设计了一种基于交互式多模型(IMM)的自适应融合滤波(AFF)算法。IMM-AFF算法采用两个模型来描述系统结构,且与每个模型相对应的Sage-Husa滤波器和强跟踪滤波器(STF)独立并行工作,系统的状态估计则是两种滤波器估计的模型概率加权融合。IMM-AFF算法兼具Sage-Husa滤波器状态估计精度高和STF对系统模型不确定具有强鲁棒性的优点,克服了两种滤波器各自单独使用时的缺点。将IMM-AFF算法应用于INS/GP