论文部分内容阅读
针对视觉跟踪中目标尺度变化对准确跟踪的不利影响,提出一种基于核相关的尺度自适应视觉跟踪算法。首先,通过建立核岭回归模型构建二维核相关定位滤波器,采用融合后的多通道特征对滤波器进行训练,提高目标定位的精度;然后,对目标区域进行多尺度采样,样本缩放后提取其特征,并构造为一维特征,以此构建一维核相关尺度滤波器,估计出目标的最佳尺度。在OTB2013平台上的实验结果表明,与8种当前主流的跟踪算法相比,本文算法的跟踪精度和成功率均有优势。在尺度变化条件下,本文算法在快速准确跟踪的同时,较好地实现了对目标尺度的