论文部分内容阅读
Marine in situ testing is a necessary step for stereotyping newly developed marine sensors. The use of test sites in the Yangtze Estuary area, which has high turbidity and abundant nutrients, can effectively reduce the needed testing time owing to its harsh conditions. Five test stations were established, and a floating buoy and fixed test equipment were designed. A control system, including a sensor connection, data processor, video remote transmission, and corresponding control algorithm, was developed. The control system enabled the nondestructive monitoring of biological attachments and bidirectional, real-time communication between an upper server on land and the control system at the test sites. The dissolved oxygen (DO), temperature, and pH data of DOS600 and DPS600 sensors were compared with those of AP2000 sensors. Temperature recording using the DOS600 sensor was performed nearly as well as that of the AP2000 sensor. The mean DO values (standard deviations) were 8.414 mg L-1 (2.068) and 6.896 mg L-1 (1.235) for the DOS600 and AP2000 sensors, respectively, indicating that the DOS600 performance was unsatisfactory. The pH re-cording of the DPS600 was slightly worse than that of the AP2000 sensor. Experimental results showed that the DO value was more easily affected by the buoy movement of waves compared to the pH and temperature. Moreover, data fluctuations showed that the DO and pH parameters were more vulnerable to biofouling than temperature. Waves and biofouling create a harsh test environment, and the performance difference between the developed sensors and a standard sensor can be obtained in a short time period.