论文部分内容阅读
太阳帆航天器以两姿态角作为轨道控制输入时,其轨道动力学方程具有非仿射非线性特性.通过人工平动点处线性化获得的线性系统可完成太阳帆航天器轨道保持控制器的分析与设计.由于线性近似模型为有误差模型,存在近似有效范围约束,表现为轨道高度约束和姿态角幅值约束.本文研究了姿态角幅值约束对线性近似模型有效性的影响,通过计算给出满足近似误差要求的姿态角幅值约束.当控制输入存在幅值约束时,控制器轨道修正能力受到束缚.通过研究姿态角幅值约束下的最大允许入轨误差,设计了最大允许入轨误差下线性二次型调节器(LQR)用于轨道保持控制,并将控制器应用于太阳帆日地三体系统非线性模型中,实现了日地人工L_1点Lissajous轨道最大允许入轨误差的控制收敛和良好精度下的轨道保持控制.
The solar sail spacecraft has two non-affine nonlinear characteristics when using two attitude angles as the orbit control inputs. The linear system obtained by linearization at the artificial translation point can complete the spacecraft orbital holding controller Analysis and design.As the linear approximation model is an error model, there exists an approximate effective range constraint, which is represented by the orbital height constraint and the attitude angle amplitude constraint.In this paper, the influence of attitude angle amplitude constraints on the validity of the linear approximation model is studied, The attitude angle amplitude constraint which satisfies the approximate error requirement is given.The trajectory correction ability of the controller is constrained when there is amplitude constraint on the control input.According to the maximum allowable tracking error under the restriction of attitude angle amplitude, The linear quadratic regulator (LQR) under rail error is used for track keeping control, and the controller is applied to solar sail terrestrial three-body system nonlinear model to realize the maximum allowable tracking error Control of convergence and good track keeping control.