【摘 要】
:
多孔镁(Mg)支架有利于生物植入,但是由于Mg的高活性,植入后降解速度过快,不利于新骨的形成.为了有效地控制镁支架的降解,研究了3种不同表面涂层对多孔镁支架的影响.通过能量色散光谱仪(EDS),X射线衍射(XRD)和红外傅里叶变换光谱(FTIR)证实支架表面的组成为纯Mg,氧化镁(MgO),磷酸氢钙(DCPD)和硬脂酸(SA).结果表明,从表面形貌可以看出,SA涂层更光滑,更致密.模拟体液(SBF)的体外降解实验表明,与未涂覆的Mg支架相比,表面涂层可以有效地减慢支架的降解,并且DCPD涂层和SA涂层优于
【机 构】
:
北京科技大学新材料技术研究院,北京100083;广东工业大学,广东广州510006;季华实验室,广东佛山528299
论文部分内容阅读
多孔镁(Mg)支架有利于生物植入,但是由于Mg的高活性,植入后降解速度过快,不利于新骨的形成.为了有效地控制镁支架的降解,研究了3种不同表面涂层对多孔镁支架的影响.通过能量色散光谱仪(EDS),X射线衍射(XRD)和红外傅里叶变换光谱(FTIR)证实支架表面的组成为纯Mg,氧化镁(MgO),磷酸氢钙(DCPD)和硬脂酸(SA).结果表明,从表面形貌可以看出,SA涂层更光滑,更致密.模拟体液(SBF)的体外降解实验表明,与未涂覆的Mg支架相比,表面涂层可以有效地减慢支架的降解,并且DCPD涂层和SA涂层优于MgO涂层.在第15周时,浸泡在SBF中的DCPD和SA涂层支架的降解率为70%,这可以为新骨的生长提供一定的时间.“,”Porous magnesium(Mg)scaffolds are beneficial to biological implantation,but because of the high activity of Mg,the degradation rate after implantation is too fast,which is not conducive to the formation of new bone.In order to effectively control the degradation of Mg scaffolds,three different surface coatings,magnesium oxide(MgO),calcium hydrogen phosphate(DCPD)and stearic acid(SA)on the porous Mg scaffolds was prepared and their effects on the scaffolds were investigated.The surface composition of the uncoated scaffold and the coatings was confirmed to be pure Mg,MgO,DCPD and SA by energy dispersive spectrometer(EDS),X-ray diffraction(XRD)and Fourier transforms infrared spectra(FTIR).The results show that SA coating is smoother and more compact in surface morphology.In vitro degradation in simulated body fluid(SBF)indicates that surface coatings can effectively slow down the scaffold degradation,while DCPD coating and SA coating are better than MgO coating in resisting the degradation.The degradation rate of the scaffolds with DCPD and SA coating soaked in SBF is 70% at the 15th week,which provides a certain period of time for the growth of new bone.
其他文献
采用改进的Bridgman定向凝固技术制备了凝固速率为25 μm/s的Ni-Si共晶复合材料.由于在凝固过程中不可避免地会产生亚稳相Ni31Si12,采用退火工艺以减少亚稳相的含量,并利用电化学阻抗谱和电位动力学极化技术分析了材料在25℃、7%(质量分数)H2SO4溶液中的耐腐蚀性,并进行了等效电路分析.结果 表明,退火处理(1050℃、4h)改善了亚稳相Ni31Si12的含量和分布,退火后Ni-Si共晶的钝化性能和耐腐蚀性提升.亚稳相的含量越少,耐腐蚀性能越强.“,”The modified Bridg
结合密度泛函理论框架内的周期性平板模型,运用第一性原理计算方法研究了CO2在δ-Pu(100)表面的吸附行为.结果 表明,CO2分子以C端向下和C-Pu、O-Pu多键结合的方式吸附在δ-Pu(100)表面.吸附类型属于强化学吸附,最稳定的吸附构型是H1-C4O4,此时吸附能为-6.430 eV,吸附稳定性顺序为穴位>桥位>顶位.CO2分子主要和表面Pu原子反应,而与其它3层Pu原子的反应较弱.更多的电子向CO22πu轨道转移有利于C-O键的弯曲和活化.此外,CO2分子和Pu原子之间的化学键主要是离子态,反
纯镁为密排六方结构,具有较少的独立滑移系导致其塑性较差.研究了纯镁变形后的微观组织演变、力学性能、腐蚀行为.结果 表明,纯镁经过等径角挤压(ECAP)变形后晶粒明显细化以及基面织构发生了弱化,导致纯镁的塑性得到了显著地提高.等径角挤压变形后纯镁强度降低主要是因为基面织构弱化影响大于晶粒细化.此外,等径角挤压变形后纯镁自腐蚀电位和腐蚀电流密度明显增加,纯镁的抗腐蚀性能显著提高.纯镁的腐蚀机理可能从局部腐蚀向均匀腐蚀转变,从而减少了样品在标准模拟体液浸泡中的腐蚀脱落,确保了试样的完整性.“,”The clos
使用GH3039合金作为γ-TiAl与碳钢摩擦焊接的过渡第三体,采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了TiAl/GH3039摩擦焊接接头的界面结构.结果 表明,γ-TiAl和GH3039摩擦焊接接头的最大抗拉伸强度能达到400 MPa以上.GH3039一侧热力影响区的塑性变形大于TiAl一侧,并且在两侧均发生动态再结晶.接近GH3039母材相层中的Ni含量几乎不变,接近TiAl母材相层中的Ti含量也几乎不变.在GH3039侧面附近的焊接区中,富Ni和富Cr晶粒的分布是互补的.Ti和A
研究了冷变形对纯镍N6组织和力学性能演变的影响.对纯镍N6试样进行了冷轧变形(20%、30%、50%、70%、90%).采用扫描电子显微镜(SEM)、电子背散射衍射(EBSD)、X射线衍射(XRD)、显微硬度测量和拉伸试验对冷轧试样的组织和力学性能进行了表征.结果表明,纯镍N6的晶粒得到了细化,不规则取向晶粒转变为与轧制方向平行的条状晶粒.纯镍N6在轧制压下量为90%时,晶粒尺寸达到微纳米级别,其中晶粒直径主要在10 μm以下,占全部晶粒尺寸的94%.轧制试样中低角度晶界分布均匀,与相邻点的10°错向角比
基于不同Ni、P原子比设计合成了 Cu-Ni-P系列合金,并针对其特有的微观组织及物相提取过程进行了研究.研究发现,Cu-xNi-4.5P合金铸锭内含有Cu和多种Ni-P物相,如Ni5P4、Ni12P5及Ni3P.经过熔体旋淬处理后,其薄带试样中磷化物主要以Ni12P5和Ni3P形式存在.此外,对比发现,合金内镍含量的增加在一定程度上促使了磷化物相的粗化.通过调控合金的凝固行为及物相提取工艺,可获得多级孔结构的Ni-P颗粒,其孔洞是由于腐蚀过程中铜基体、共晶组织内及固溶部分的铜被去除而形成的.通过对典型合
针对AZ31镁合金长轴波纹管提出差温局部热态气压成形新工艺.首先在温度范围573~673 K、应变速率范围0.001~0.1 s-1条件下对AZ31镁合金管材进行了热拉伸实验,分析了温度、应变速率对其力学性能的影响.设计制造了长轴波纹管差温局部热态气压成形装置,利用该装置,通过单波波纹管的热气胀成形研究了成形温度、成形内压对波纹管成形时间、壁厚分布的影响规律,从而确定最佳成形工艺窗口,并通过五波长轴波纹管的成形验证该新工艺的可行性.结果 表明,差温成形过程中,低温区最高温度不超过50℃,高温区温度可以精确
在1173K下将金属氧化物在CaC12熔盐中进行电脱氧,制备了CoCrFeNi高熵合金.通过X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散X射线能谱(EDS)研究了不同电解时间下金属氧化物转化为高熵合金的相变过程.结果 表明,CoCrFeNi高熵合金的形成过程包括快速脱氧和深度脱氧2个阶段.在快速脱氧阶段,在lh内去除了烧结氧化物球团中93.93%(质量分数)的氧,电流效率达到89.95%.电解结束后,产物的氧含量可达0.26%(质量分数),电流效率为17.93%.该高熵合金的形成过程可用于指导
提出了一种镁合金管材转角焊合室分流挤压新工艺,该工艺可在有效延长焊合室长度和焊合时间前提下保证舌针刚度,从而保证管材尺寸精度,并且可通过转角剪切变形机制增加预焊合金属变形量和动态再结晶程度,从而有利于提高管材性能和焊缝焊合性能.利用有限元法揭示了转角焊合室分流挤压成形过程中金属的流动特征,应变分布特征和焊合室内的静水压力分布特征.结果 表明,整个挤压过程无金属折叠,从而保证管材的表面质量;流经转角后预焊合金属变形量明显增加,有利于提高管材质量和焊缝质量.最后,研究揭示了坯料初始温度,挤压速度和模具转角对焊
采用透射电子显微镜(TEM)、电子背散射衍射(EBSD)和Instron试验机对试验温度400℃下高压扭转变形加工的Al-Zn-Mg-Cu-Zr合金进行组织和力学性能的表征与测试.结果 表明,变形试样的晶界和晶粒中的第二相明显被破碎和细化,晶界无沉淀析出带宽度变窄,大大提高了变形试样的强度和塑性.初始样品的晶粒取向是随机分布的.当应变较小时,试样的晶粒尺寸、晶粒取向和局部取向差异均呈现非均匀的片层状分布.由于非均匀层状组织在变形过程中产生的背应力强化效应,0.5圈变形试样的力学性能最好.“,”The mi