论文部分内容阅读
针对人脸识别中存在遮挡、光照、表情变化等问题,提出了一种基于改进的鲁棒主成分分析的人脸识别算法,它利用人脸的稀疏误差成分准确判断出人脸图像之间的差异。该算法首先对人脸进行低秩恢复,得到表示人脸普通特征的低秩分量和描述人脸差分信息的稀疏误差分量,然后定义稀疏度和平滑度两种描述符来表示稀疏误差分量的特征,最后联合上述两种描述符对人脸图像进行分类判别。实验结果表明,在光照条件和遮挡区域随机的情况下,提出的采用误差图像进行分类判别的算法在处理遮挡、光照、表情变化等人脸识别问题上均具有优越的识别性能。