论文部分内容阅读
利用卷积神经网络(CNN)和随机森林回归模型,提出了一种新的欧洲中期天气预报中心(ECMWF)降水订正预报方法。该方法首先根据ECMWF模式对站点雨量预报值所属的等级进行划分,再计算出不同等级相对应的高相关因子矩阵。进一步利用CNN模型对高相关矩阵进行综合特征提取的学习和训练。最后对CNN模型最终输出的特征因子中,选取若干个与预报站点相关性高的特征,并与ECMWF降水量场插值到预报站点的因子一起,作为随机森林回归模型的输入因子进行预报建模。通过对10个预报试验站点未来24h降水量的分级和不分级订正预报试验