论文部分内容阅读
Nowadays, a considerably large number of documents are available over many online news sites (e.g., CNN and NYT). Therefore, the utilization of these online documents, for example, the discovery of a burst topic and its evolution, is a significant challenge. In this paper, a novel topic model, called intermittent Evolution LDA (iELDA) is proposed. In iELDA, the time-evolving documents are divided into many small epochs. iELDA utilizes the detected global topics as priors to guide the detection of an emerging topic and keep track of its evolution over different epochs. As a natural extension of the traditional Latent Dirichlet Allocation (LDA) and Dynamic Topic Model (DTM), iELDA has an advantage: it can discover the intermittent recurring pattern of a burst topic. We apply iELDA to real-world data from NYT; the results demonstrate that the proposed iELDA can appropriately capture a burst topic and track its intermittent evolution as well as produce a better predictive ability than other related topic models.
Nowadays, a substantial large number of documents are available over many online news sites (eg, CNN and NYT). Thus, the utilization of these online documents, for example, the discovery of a burst topic and its evolution, is a significant challenge. In iDADA, the time-evolving documents are divided into many small epochs. IELDA utilizes the detected global topics as priors to guide the detection of an emerging topic and keep track of its evolution over different epochs. As a natural extension of the traditional Latent Dirichlet Allocation (LDA) and Dynamic Topic Model (DTM), iELDA has an advantage: it can discover the intermittent recurring pattern of a burst topic. We apply iELDA to real-world data from NYT; the results demonstrate that the proposed iELDA capablely capture a burst topic and track its intermittent evolution as well as produce a better predictive ability than othe r related topic models.