论文部分内容阅读
具有线性约束的最小矩阵秩优化问题在控制、信号处理、系统识别等领域都有着广泛的应用。在矩阵优化问题中,矩阵的秩能够反应数据的稀疏性,但由于矩阵秩函数的非凸性,矩阵秩优化问题一般解决起来比较困难。目前,矩阵核范数的应用对于解决矩阵秩优化问题提供了有效的工具。具有线性约束的最小核范数问题为最小秩问题最紧的凸松弛问题,对于最小核范数问题,如今已存在大量的算法,而可以解决最小化2个下半连续凸函数之和这一类优化问题的Douglas-Rachford分离技巧也同样可以用于此类问题的研究,运用此类技巧得到的算法具有良好的